

removable

m

Zinc plated

8.8 M10/15x90 50Nm

Mechanically galvanised

Edition: April 2011

POWERS FASTENERS

Powers offers the widest range of mechanical and adhesive fasteners in the market place. Powers products cover the full traditional anchoring range while specialising in innovative products that provide the architect, engineer and end user with aesthetic, high performance, labour saving fastening solutions.

Support

For fast technical advice, free samples and free on site demonstrations, visit our web site www.powers.com.au

Powers adhesive systems

V12 High performance. Fast curing Styrene free

Training Facility Melbourne

Blue-Tip SCREW-BOLT[™] Simple to install Removable Vibration resistant

In-house Product & Application Testing Service Melbourne

PBI BRACE-IT anchor High performance Economical Versatile

PFPRO PF PRO

Heavy duty Odourless Epoxy anchoring adhesive Environmentally friendly

National on Site Anchor Testing Service

National On Site Service Powers Training Vehicles (PTV)

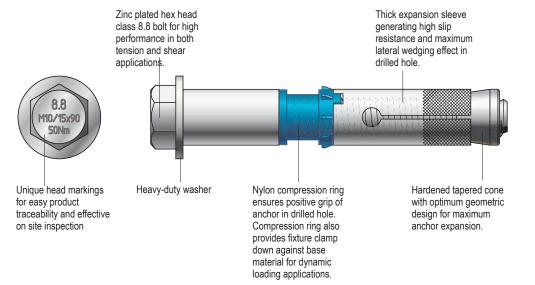
Contents

Description	4
Material specifications	5
Installation procedure	5
Anchor sizes and styles	6
Performance data	7
Slip loading	9
Design criteria	9
Suggested specification	11

PSA Anchor

Introduction

The new Proprietary PSA Anchor is a heavy-duty thick sleeve expansion anchor. It is vibration resistant and removable. The anchor is available in a finished hex head zinc plated version and a bolt projecting galvanised version which can be used in concrete, stone and some types of solid brick and core filled blockwork. The diameter of the PSA anchor is the same as the drilled hole, which eliminates layout or hole spotting.


Description

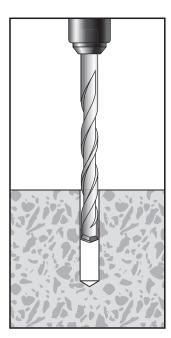
PSA Anchor

The PSA Anchor is a torque (load) controlled thick sleeve expansion anchor, which is suitable for all applications requiring high performance with minimal slip. Its unique design ensures efficient load carrying capacity in both tension and shear.

Class 8.8 bolt projecting nut and washer version in mrchanically galvanised finish

Typical Applications:

- Structural connections including column bases, beam supports etc.
- Scaffolding tie back to concrete and masonry
- Heavy machinery
- Racking tie down



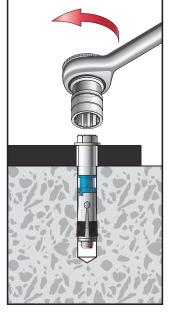
Material specifications


Anchor components	Carbon Steel
Bolt	Class 8.8 (UTS = 800 MPa min. / Y.S. = 640MPa min.)
Washer	C1040 (heat treated)
Expander sleeve	C1022
Extention sleeve	C1022
Expander cone	C1040 (heat treated)
Compression ring	Nylon
Plating (Zinc)	5microns (min.) zinc plated in accordance with AS1789-2003
Plating (Galvanised)	* 25 microns (min.) GALZIN [®] coating/ (Zinc Alum corrosion resistant coating applied by a mechanical plating process)
Head style	Finished Hex Head and Bolt projecting
Socket size (Hex head and	M10 = 17mm
bolt projecting)	M12 = 19mm
	M14 = 22mm
	M16 = 24mm

* GALZIN® corrosion resistant coating is superior to hot dip galvanised coating. (Refer to GALZIN® brochure.)

Installation procedure

Using the proper diameter bit, drill a hole into the base material to the depth required. This must be no more than 80% of the base material thickness



Blow and brush the hole clean of

dust and other material. Position

the fixture. Do not expand the

anchor prior to installation.

Drive the anchor through the fixture into the anchor hole until the bolt head is firmly seated against the fixture. Be sure the anchor is driven to the required embedment depth.

Tighten the anchor by turning the head 3 to 4 turns or by applying the guide installation torque from the finger tight position.

Anchor sizes and styles

The anchor length published for the standard threaded PSA anchor is measured from under the washer to the bolt end. To select the proper length, first determine the embedment depth required to obtain the desired load capacity. Then add the thickness of the fixture, including any spacers or shims, to the embedment depth. This will be the minimum anchor length required.

Zinc plated carbon steel, hex head PSA anchor

The PSA anchor is manufactured from carbon steel which is plated with commercial bright zinc and a supplementary chromate treatment.

Part No	Description	Drill Ø mm	Fixture clearance Ø mm	Embed. depth mm	Fixture thickness mm	Tightening torque Nm	Box qty	Carton qty
PSA15-10/90	M10 x 90mm	15	17	80	10	50		
PSA15-20/110	M10 x 110mm	15	17	90	20	50	25	
PSA18-10/85	M12 x 85mm			75	10	80		75
PSA18-20/105	M12 x 105mm	18	20	85	20			
PSA18-25/130	M12 x 130mm			105	25			
PSA20-25/110	M14 x 110mm	20	22	85	25	150	10	40
PSA24-25/130	M16 x 130mm	24	26	105	25	180	10	40
PSA24-25/145	M16 x 145mm	24	20	120	25	100	10	40

Mechanically galvanised carbon steel PSA anchor

The PSA anchor is manufactured from carbon steel which is mechanically galvanised to Class 3 in accordance with AS 3566.2 - 2002

Part No	Description	Drill Ø mm	Fixture clearance Ø mm	Embed. depth mm	Fixture thickness mm	Tightening torque Nm	Box qty	Carton qty
PSA15-10/90G	M10 x 90mm	45	47	80	10	50		
PSA15-20/110G	M10 x 110mm	15	17	90	20	50	25	
PSA18-10/85G	M12 x 85mm			75	10	80		75
PSA18-20/105G	M12 x 105mm	18	20	85	20			
PSA18-25/130G	M12 x 130mm			105	25			
PSA20-25/110G	M14 x 110mm	20	22	85	25	150	10	40
PSA24-25/130G	M16 x 130mm	24	26	105	25	400	40	40
PSA24-25/145G	M16 x 145mm	24	20	120	25	180	10	40

°

7

Performance data (Zinc plated PSA)

Load controlled expansion anchors for structural connections.

Working stress design Allowable working load capacities for carbon steel PSA anchor (Zinc plated) 32 MPa concrete 40 MPa concrete Anchor hole size Anchor bolt size Embedment depth Guide 20 MPa concrete Tension kN Shear kN Tension kN Shear kN Tension kN Shear kN torque mm mm mm mm 80 9.3 14.8 11.8 18.7 13.2 20.9 15 M10 50 15.2 90 10.7 13.5 19.2 15.1 21.5 75 9.5 15.9 11.9 20.1 13.4 22.5 18 M12 85 80 12.8 16.9 16.2 21.5 18.1 24.0 105 15.5 20.2 21.2 25.6 22.0 28.6 13.5 20.7 17.1 26.2 19.1 29.3 85 20 M14 150 100 26.6 22.3 33.6 23.2 16.3 37.6 18.1 27.4 22.9 34.7 25.6 38.8 105 24 M16 180 120 22.5 38.7 28.4 49.0 31.7 54.8

NOTE: Incorporated safety factor (Tension and shear) F_{sc} =3 (concrete).

Limit state design

Anchor	Anchor	Embedment	Guide	20 MPa concrete		32 MPa c	32 MPa concrete		oncrete
hole size mm	bolt size mm	depth mm	torque mm	Tension kN	Shear kN	Tension kN	Shear kN	Tension kN	Shear kN
45	M10	80	50	16.7	26.6	21.2	33.7	23.7	37.7
15	WITO	90		19.2	27.4	24.3	34.6	27.2	38.7
18 M12	75	80	17.1	28.6	21.4	36.2	24.1	40.5	
	85		23.1	30.4	29.2	38.7	32.6	43.2	
		105		28.1	36.4	38.2	46.1	39.7	51.5
00		85	450	24.4	37.3	30.8	47.1	34.4	52.7
20	M14	100	150	29.6	47.9	40.3	60.6	41.8	67.7
24 M16	105	100	32.6	49.4	41.2	62.5	46.1	69.9	
	120	180	40.4	69.7	51.1	88.2	57.1	98.6	

NOTE: Incorporated strength reduction factor (Tension and shear) ϕ = 0.6.

Performance data (mechanically galvanised PSA)

Working stress design

Load controlled expansion anchors for structural connections.

Allowable wor	rking load cap	acities for carb	on steel PSA	anchor (Mec	hanically ga	Ivanised)				
Anchor	Anchor	Embedment	Guide	20 MPa concrete		32 MPa concrete		40 MPa c	oncrete	
hole size mm	bolt size mm	depth mm	torque mm	Tension kN	Shear kN	Tension kN	Shear kN	Tension kN	Shear kN	
15	M10	80	50	8.1	14.8	10.3	18.7	11.5	20.9	
15	WITO	90		50	9.0	15.2	11.4	19.2	12.8	21.5
	18 M12	75		8.1	15.9	10.1	20.1	11.4	22.5	
18		85	80	10.9	16.9	13.8	21.5	15.4	24.0	
		105		11.6	20.2	15.9	25.6	16.5	28.6	
20	M14	85	150	11.0	20.7	13.9	26.2	15.5	29.3	
20	1114	100	150	13.0	26.6	16.4	33.6	18.3	37.6	
24		105	180	14.5	27.4	18.3	34.7	20.5	38.8	
24 M16	120	100	18.0	38.7	22.7	49.0	25.4	54.8		

NOTE: Incorporated safety factor (Tension and shear) F_{sc} =3 (concrete).

Limit state design

Limit sate de	sign load cap	acities for carb	on steel PSA a	anchor (Mech	nanically gal	lvanised)				
Anchor	Anchor	Embedment	Guide	20 MPa c	oncrete	32 MPa concrete		40 MPa o	concrete	
hole size mm	bolt size mm	depth mm	torque mm	Tension kN	Shear kN	Tension kN	Shear kN	Tension kN	Shear kN	
15	M10	80	50	14.6	26.6	18.5	33.7	20.7	37.7	
15	IVITU	90	90	50	16.2	27.4	20.5	34.6	23.0	38.7
	18 M12	75		14.6	28.6	18.2	36.2	20.5	40.5	
18		85	80	19.6	30.4	24.8	38.7	27.7	43.2	
		105		20.9	36.4	28.6	46.1	29.7	51.5	
00		85	450	19.8	37.3	25.0	47.1	27.9	52.7	
20	M14	100	150	23.4	47.9	29.5	60.6	32.9	67.7	
24	24 M16	105	180	26.1	49.4	32.9	62.5	36.9	69.9	
24		120	100	32.4	69.7	40.9	88.2	45.7	98.6	

Slip loading

Torque controlled expansion anchor slip loading design

Where it is necessary in fixing applications to design around a slip load (0.1 mm displacement) it is critical that the Recommended Guide Torque be precisely applied, to ensure accurate performance characteristics from the fixing. The Final Preload of an anchor is considered to be the point at which negligible slip occurs (0.1mm)

Final Preload = Slip Load

DSA alin loading

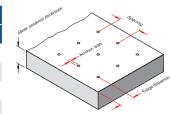
To achieve the Permissible Slip Load of a fixing, it is recommended that the applied load be limited to 65% of the Final Preload, as described in AS 3850-2003 (Tilt-up concrete and precast concrete elements for use in buildings).

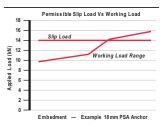
Permissible Slip Load = 65% Of Final Preload

PSA S	siip load	ling						
ANCHOR	ANCHOR	MIN. DEPTH	GUIDE Hex Bolt (zinc) version		inc) version	Bolt projecting (gal) version		
HOLE SIZE mm	BOLT SIZE mm	OF EMBEDMENT mm	TORQUE Nm	FINAL PRELOAD kN	PERMISSIBLE SLIP LOAD kN	FINAL PRELOAD kN	PERMISSIBLE SLIP LOAD kN	
15	M10	80	50	18.3	11.9	17.8	11.6	
18	M12	75	80	22.9	14.9	22.1	14.3	
20	M14	80	140	27.2	17.7	25.2	16.4	
24	M16	105	180	34.3	22.3	30.9	20.1	

NB: The Working Load Conditions of an anchor should never be exceeded.

Design criteria


Base material thickness


The minimum recommended thickness of base material, BMT, when using the PSA anchor is 125% of the embedment to be used. For example, when installing an anchor to a depth of 100mm, the base material thickness should be 125mm. Spacing and edge distance criteria listed below should be considered when calculating the performance capabilities of the PSA anchor.

Spacing between anchors

To obtain the maximum load in tension or shear, a spacing, S, of 10 anchor diameters (10d) should be used. The minimum recommended anchor spacing, S, is 5 anchor diameters (5d) at which point the load should be reduced by 50%. The following table lists the load reduction factor, Rs, for each anchor diameter, d, based on the center to center anchor spacing.

ANCHOR HOLE SIZE Ø	Spacing distance, S (mm) Tension and Shear							
mm	10d	9d	8d	7d	6d	5d		
15	150	135	120	105	90	75		
18	180	162	144	126	108	90		
20	200	180	160	140	120	100		
24	240	216	192	168	144	120		
Rs	1.00	0.90	0.80	0.70	0.60	0.50		

Edge distance – Tension

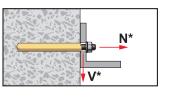
An edge distance, E, of 12 anchor diameters (12d) should be used to obtain the maximum tension load. The minimum recommended edge distance, E, is 5 anchor diameters (5d) at which point the tension load should be reduced by 20%. The following table lists the load reduction factor, Re, for each anchor diameter, d, based on the anchor centre to edge distance.

2d 11d	10d	9d	8d	7d	6d	54
00 405					u vu	5d
80 165	150	135	120	105	90	75
16 198	180	162	144	126	108	90
40 220	200	180	160	140	120	100
88 264	240	216	192	168	144	120
00 0.97	0.94	0.91	0.89	0.86	0.83	0.80
	40 220 88 264	40 220 200 88 264 240	40 220 200 180 88 264 240 216	40 220 200 180 160 88 264 240 216 192	40 220 200 180 160 140 88 264 240 216 192 168	40 220 200 180 160 140 120 88 264 240 216 192 168 144

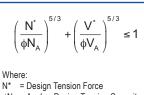
Edge distance – Shear

For shear loads, an edge distance, E, of 12 anchor diameters (12d) should be used to obtain the maximum load. The minimum recommended edge distance, E, is 5 anchor diameters (5d) at which point the shear load should be reduced by 50%. The following table lists the load reduction factor, Re, for each anchor diameter, d, based on the anchor centre to edge distance.

ANCHOR HOLE SIZE Ø	Edge distance, E (mm) Shear only										
mm	12d	11d	10d	9d	8d	7d	6d	5d			
15	180	165	150	135	120	105	90	75			
18	216	198	180	162	144	126	108	90			
20	240	220	200	180	160	140	120	100			
24	288	264	240	216	192	168	144	120			
Re(s)	1.00	0.93	0.86	0.79	0.71	0.64	0.57	0.50			

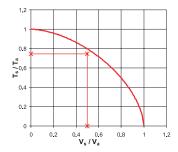

Design criteria

Combined loading


Anchors loaded in both tension and shear must satisfy the following equations:

Working stress design

Limit state design



- 5/3 $\frac{S_s}{S_A}$ $\frac{T_s}{T_A}$ + ≤ 1 Where: Applied Tension LoadAllowable Tension Load Τs
- T_A S_S S_A = Applied Shear Load = Allowable Shear Load

 ϕN_A = Anchor Design Tension Capacity . V*

= Design Shear Force ϕV_A = Anchor Design Shear Capacity

Design parameters for anchors in precast and tilt-up concrete panels

Part No	Description	Drill Ø	Drill depth	Concrete panel thickness (min.)
		mm	mm	mm
PSA15-10/90	M10 x 90mm	15	85	125
PSA15-20/110	M10 x 110mm	10	95	125
PSA18-10/85	M12 x 85mm	18	80	100
PSA18-20/105	M12 x 105mm		90	125
PSA18-25/130	M12 x 130mm		110	150
PSA20-25/110	M14 x 110mm	20	90	125
PSA24-25/130	M16 x 130mm	24	115	150
PSA24-25/145	M16 x 145mm	24	130	175

* *

Never drill deeper than 80% of panel thickness, always clean the drilled hole and always use the correct length load controlled expansion anchor. This will prevent blow out in panels and eliminate costly repairs.

Suggested specification

	Example
Product name	PSA anchor
Part number	PSA 24-25/145
Size	M24 x 145mm
Embedment depth	120mm
Minimum spacing and edge distance	Spacing: 240mm, Edge distance: 288mm
	Product to be installed in accordance with published installation procedure

POWERS FASTENERS

Contact Information for Powers Fasteners Australasia

Head Office Address :	Factory 3, 205 Abbotts Road Dandenong South VIC 3175
Telephone : Fax :	(03) 8795 4600 (03) 8787 5899
Website :	www.powers.com.au
E-mail :	info@powers.com.au

Distributor: